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ABSTRACT 

The effect of a mean flow and density Stratification on the instabi!ity of a density 

discontinuity i s  investigated. The flow i s  of the jet type between parallel walls with a 

piecewise linear velocity prtf i ie. The strctificcrtlon I s  statically stable. The dominant 

instability occurs for large values of the perturbation wavenumber. The stratification and 

flow are generally stabilizing, but the effect of the stratification i s  found to be destabil- 

izing with respect to small wavenumbers. 



I .  Introduction 
~ 

We shall be interested i n  how the instability of a heavy fluid superposed on a lighter 

one (Taylor instability) may be modified by a mean flow and a mean stratification of density. We 

assume an inviscid, incompressible fluid, and by stability we mean stability with respect to small 

perturbations in  the linearized theory. Since we are primarily interested i n  modifications which 

are possibly stabilizing, we choose a velocity profile of the iet type between parallel plates, which 

i s  of the stable type for inviscid fluids according to Rayleigh's criterion since it does not have a 

point of inflection. 

To simplify the mathematical treatment of the problem we assume a piecewise linear velocity 

profile, i .e., we assume two layers, i n  each of which the profile i s  linear, with an unstable density 

discontinuity at the interface. Within each layer we assume a density stratification which i s  static- 

a l ly stable (positive Richardson number). Such a stratification could arise from the temperature 

distribution of a hot, heavy fluid supported by a cooler, light fluid. 

2. Formulation of the Eigenvalue Problem 

2.1 Linearization of the Basic Eauations 

We assume an inviscid, incompressible fluid i n  a constant gravity field. The basic equations 

are, therefore, the momentum equation 

the incompressi bi I i ty condition 

and the continuity equation, which may now be written 



2. * 

. -The equations have been written i n  non-dimensional form by introducing reference quantities 

V and f'o for the velocity and density and by assuming that the velocity field i s  characterized 

by q length ./ and that the variation of density i s  characterized by a length h. Astericks 

wi l l  be used to denote dimensional quantities. Thus, the dimensionless gravitational constant 

i s  9 - - ( l / ? ) g *  and g i s  (0, 0, g ). The quantities 2r , 

dimensionless velocity, density, and pressure fields, and D/Dt i s  the material derivative. 

3 

r and are the 

The dimensionless equations may be linearized about a mean velocity f U (z), 0, 01 , 

a mean density 7 (z), and a mean pressure p (2) by superimposing small perturbations (denoted 

by primes) on the mean fields 

- - 

* #  
2 

3- = ( U + U , V , W ' )  

0 

P = P + P  

and neglecting terms which are of the second order i n  primed quantities. Since the independent 

variables are cyclic except z , we assume the primed quantities to be of the form 

0 

q = q (z) exp i  ( o ( x +  f y  - d c t )  

to be real, we may regard c as the (possibly complex) r Assuming the wavenumbers o( and 

eigenvalue. Stability then depends on the imaginary part of c . If Im c o the perturbation 

grows in  time and the flow i s  unstable. Moreover, i t  can be shown that for inviscid fluids i f  

c i s  an eigenvalue then c" i s  also an eigenvalue.' Therefore, we may infer instability i f  

I m c f O .  

The linearized equations may be solved for W ,  and i f  we further make the Boussinesq 

approximation of neglecting the density variation except where it i s  multiplied by the gravi- 

tational constant g , we obtain 4 

0 

k2 + u - k2 (2.1) 



\ 
. .  

. 'where k i s  the total wavenurnber 

c2 k-2 = d 2  + 

s the local Richardson number and J 

J = g * J 2  

V2 d 

Thus, we have static stability if  J 7 0 . 

3. 

2.2 The Eigenvalue Equation 

We consider a flow of the jet type between parallel plates in two layers with an unstable 

density discontinuity A at the interface (Fig. 1 )  c 

Fig. 1 



. .  
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4. 

. 'The maximum velocity of the ie t  i s  used as the reference velocity V and the width of the 

channel as the reference length 1 . Then the dimensionless velocity profile i s  

U = z/d 05 z L d  (layer I )  

- - 1 - z  d c z  - ~1 (layer 2) 
l - d  

where d i s  the (dimensionless) height of the interface and 

Stratification within the layers i s  given by Richardson numbers J, (z) a d  J2 (z). 

A? = (" 2 (d) - (d) 0 .  

The appropriate boundary conditions to impose are the vanishing of w at the walls 

(z = 0, 1), and at the interface (z = d) the continuity of w and the continuity of the pressure. 

In terms of w , the last condition i s  equivalent to the iump condition 
2 

where A 

not think of i t  as the gravitational acceleration, but rather we may regard the quantity 

as a sort of Richardson number associated with the density discontinuity. 

denotes the iump in  crossing the interface. Since g i s  dimensionless we should 

2 

Let 6 =  - A u '  = 1 
dO-d) 

The function S i s  shown i n  Figure 2. 

I d 
I 

I 

'/a L 

Fig. 2 



. If we let W1 and W2 be the solutions of eq. (2.1) for layer 1 and W3 and W4 the 

solutions for layer 2, by imposing the boundary conditions we obtain the eigenvalue 

equation for c : 

1 - c  

where r = 1 
1 - c  

Theta i s  the angle which the wavenumber of the perturbation makes with the x-axis. Thus, 

d =  k c o s 8  . 
If we assume that J1 and J are constants, explicit solutions of eq. (2.1) may be 

obtained i n  terms of BesseI functions. In the first layer (0 S z 8 d) eq. (2 .l) may be 

2 

written 

(2 3) i' w = o  

J1 d2/cos2 8 d P 2  d 2 w  - (I - 
S L  

where P = k (z -cd)  

Solutions of eq. (2.3), W1 and W2 , are of the form $I2 Zn (i 5 ) where Zn i s  a 

BesseI function of order n and 

J.1 d2 
n2 = 1/4 - 
3 

In the second layer (d S I 5 1) eq. (2.1) may be written 



. 6. 

Zm (i ) where 

. where = k { 2 - 1  + (1 -d)  c 

Solutions of eq. (2.4), W3 and W4 , are of the form 

m 2 1  = -  - J2 (1 - df 
- 

cos t3 4 

2.3 The Static Stabi litv 

Three effects are present i n  the probiem: shear, stratificatior:, and the density discontinuity. 

Before attacking the general problem i t  wi l l  be useful to consider the two special cases i n  which 

the shear or the stratification i s  absent from the problem. In this section we consider the problem 

without shear, the static stability. If U = 0 eq (2.1) takes the simple form 

- k 2 { l  + J / g 2  } W = O  d2 W 
.2 d z  

where C i s  the amplification factor 

c =  i d c  

Assuming J1 and J to be constant, solutions are easily obtained, and, after imposing 

the boundary condition3 the following eigenvalue equation for 

2 

G i s  obtained: 
I -  

J 1 + J 1 / 6 2  ' coth k d  J 1 + J1 / g 2  ' 

If we plot the left and right hand sides of this equation as functions of G , assuming 

G real, (Fig. 3) we see that there i s  at least one root for every value of k and therefore 

there i s  always at least one unstable mode (Re C # 0). 



. .  . 7. 

Fig. 3 

Approximate solutions can be found for large and small values of the wavenumber: 

A. Solution for large wavenumbers (k >I 1) 

Assuming that 6 i s  of the order of magnitude of k , to f i rs t  order we obtain 

6 2  = 1/2 A T  g k  

3 This i s  identical with the result which i s  obtained when no stratification i s  present (Taylor 

instability). Th is  result i s  not surprising since we would not expect large wavenumbers 

(small eddies) to be sensitive to the structure of the stratification. 

B. Solution for small wavenumbers ('k << d, 1-d) 

Assuming that G i s  of the order of magnitude of k , to f i r s t  order we obtain 

for J1 , J2 >> 1 we have 



thus, the effect of the stratification i s  stabilizing with respect to small wavenumbers. 

2.4 Taylor Stability with Shear 

8 .  

In this section we consider the second special case in  which there i s  a iet  profile and a density 

discontinuity without density stratification within the two layers 

In this case eq. (2.1) reduces to 

(;.e., J1 = J2 = 0). 

d w  2 - k 2 w = 0  

d z2 

After imposing the boundary conditions we obtain the eigenvalues: : 

1 - c =  1 { 6 2 / s 2  - 4 k f ( k )  
2 k f M  cos 

where f (k) = coth k d + coth k (1 - d) 

There i s  instability if the argument of the square root i s  negative. Depending on cos 8 

we may have a cut-off wavenumber, 

k f (k) in  powers of k 

k with stability for k < kc. Expanding 
G '  

k f  (k) = $ + 1/3 kZ + . . .  
We obtain kc . to first order by setting the argument of the square root equal to zero. 

( d  + 1/3 kc2 
cos24 

s 2  - 4  

2 3 cos28 2 2  - 3 
kc z - 

4 A p  

Thus, there i s  a cut-off wavenumber provided 

+ . . . ) =  0 

s 

cos2 0 > y,* 
d 

In other words, the cut-off exists for perturbations sufficiently close to the direction 

of the shear. In this sense, the effect of the shear i s  stabilizing. 



- .  , . 

- 3 .  Solution for Small Wavenumbers 

We now attempt to obtain solutions of the general eigenvalue equation (2.1) in  the 

approximation of small wavenuqbers. J1 and J 

independent solutions of Besselikequation we choose Jn and J-n. Thus, 

are assumed to be constant. As linearly 
2 

= J m  ( i t  ) w3 w4 * $I2 J - m  ( i f  ) 

Since k <<d , 1 - d, we may expand the BesseI functions in  power series. Substituting into 

eq. (2.1) we obtain, to f i r s t  order 

1 
where z = g(d)/ s (0) = 4 (d)/ p (1) = 1 - - 

C 

2 
This may be further simplified by letting ?L = m , i .e., J1 d2 = J2 (1 - d) Then 

E 
1 - c  

z2% + 1 

22a - 1 
= 1/2 - ?l 13.1) 

9 .  

2 
where E = A? 2 / Scos 0 

The effects of the density discontinuity and of the shear are represented by G , while 

the effect of the stratification i s  represented by R. . It wi l l  be convenient to make the 

following distinctions: weak Taylor instability ( E 1 ), strong Taylor instability ( E. > 7 1 ), 

weak stable stratification ( 0 < < 1/2) , strong stable stratification ( h pure imaginary ) , and 

unstable stratification ( h > 1/2). We shall first consider the case of weak Taylor instability. 



8 

. .  
* 10. 

. -3.1 Weak Taylor Instability ( E d 4  1 ) 

3.11 Weak Stable Stratification ( 0 4 Y 1/21 

In the "zeroth approximation", i .e., E = 0, eq, (3.1) i s  

z2R + 1  - 1 - - 
2x - 1  2a  

Z 

which apparently has solutions 

1 = intege r 
h 

However, recalling that 

and assuming that c i 2 0 , we may define the branch of z2% by 

0 <arg L 

and since i n  eq. (3.3) arg z = I /N this implies that 0 </( a .  But this i s  impossible 

since P i s  an integer and therefore in  this case there are no amplified normal modes ( c  i 7 0). 

There i s  a neutral mode (z real), hawever. This i s  easily seen by writing eq. (3.2) i n  

the form 

1 
2% 

coth 'h log z = - 

Since I coth R log z I 7 1 , this equation has a root i n  the range z 7 1 (or c cO) (Fig. 4). 



c 

1 1 .  

a I 
I )  a I 
I )  
i 

I 
- - 1 -  - - - - -  

I -Ih I 

Fig. 4 

It can be easily shown that there are no roots for z < 0 . 
We turn now to the case in  which E # 0. As a typical (and simple) example, let us 

set 32. = 1/4. Then eq. (3.1) may be written 

x3 { - l + 4 € ) +  x2 1 3 -  4z. \ - y & x  + & / E  = 0 

where x = z 'I2 . When 

(c = - 1/8 ) , in the zeroth approximation. We o k i n . t h i s  root i n  the first approximation 

by setting x = 3 + X,,where XI = &(E) ,  and substituting into the cubic neglecting terms 

of order 

= 0 we obtain the neutral made already discussed, x = 3 

c2  . Thus, we obtain 

64 + & ( E 2 )  x = 3 +  - E  
9 

The mode i s  s t i  I I neutral i n  the first approximation. However, there are two other roots of 

the cubic which we may obtain i n  the first approximation by assuming x = 8'( ~ ' 1 ~  ). ' 



6 . .  
12. 

-The result i s  (to second order) 

or 

As a second example, when K = 1/6 the eigenvolue equation can be written as a quartic 

in  x and in  addition to the neutral mode we have three other modes: 

We find then that there i s  instability for any non-zero E , however small. This i s  rather 

surprising i f  we recall the result of section 2.4. There we saw that without stratification 

(J1 = J2 = 0 )  there i s  cut-off wavenumber below which the system i s  stable i f  E c 1/4 . 
Here we see that there i s  no such stable regime so that the effect of a stable stratification i s  

destabilizing with respect to the small wavenumbers. 

3.12 Unstable Stratification 

If 3 > 1/2 (J1 , J2 < 0 ) solutions of the type (3.3) are possible. It i s  now 

convenient to write these solutions in the form 

or 

where p i s  an odd integer. Here arg z = p f f  /2Rand from the definition of the branch 

cut 0 < p 4 2 31 . Therefore, for 1/2 < H 4 3/2 there i s  one amplified mode, for 

for 3/2 4 h 4 5/2 there are two amplified modes, etc. 



e . .  
* 

In the next order of approximation there i s  a correction of order & : 

where co i s  the zeroth order mot. 

3.13 Strong Stable Stratification 

In this case i s  pure imaginary. Let R;I  i 3 . The eigenvalue equation may be 

written 

L 
(3 *4) 

I 

3 
cot 9 log z = - { + - € *  

The nature of the neutral spectrum when z 0 may be seen graphically (Fig. 5) 

I - P (+ -") 



0 

4 . 14. 

. 
There i s  an infinity of eigenvalues in  the range - eo 4 c < 0 and in  the range 

1 4 C c  -with points of accumulation at c = 0, 1 . By separating eq. (3.4) into i t s  

real and imaginary parts i t  can be readily shown that there are no neutral modes i n  the range 

O < C < l  ( z c . 0 ) .  

4 A theorem of Synge may be extended to include the present problem, viz., for amplified 

modes the reai part of c must l ie in the mnge of the velocity profile. Here, this means that 

O < C & <  1 . 
We write eq . (2.1 ) i n  the form 

where W = (U - c) F and the Richardson number J (z) includes a delta function because of 

* 
the density discontinuity. We multiply by F and integrate over the range of U , (z1 , z2 ). 

Assuming F = 0 on z1 and z2 , after integrating the first term by parts we have 

The imaginary part of this equation i s  
C; J dt C U  et..) Q = 0 

so that i f c i # 0 , since Q i s  a positive function we must have Umin < c,<U max 

Since i n  the present problem there are no neutral modes in  this range except at the 

end points, any unstable modes must appear in a neighborhood of the points of accumulation, 

c = O , l .  

I 3.2 Strong Taylor lnstabi I ity 

In this case ( E > > 1 ) we would expect the density discontinuity to be the dominant 

effect. When only a density discontinuity i s  present the amplification factor, o( c i , i s  

proportional to k 'jgde. It i s  therefore reasonable to assume that c i s  proportional 



15. 

. *to . The assumption is, i n  fact, found to be justified a posteriori and in the f i r s t  

approximation c = i Jz . Further, c may be expressed as an expansion i n  powers 

of E . We expand z i n  powers of c to sufficient order and from eq. (3.1) obtain successive 

approximations to c . To the third order we obtain 

To this order the instability i s  an amplified wave with a wave velocity equal to the mean 

velocity of the shear pmfi le. The effect of the stratification i s  relatively unimportant here, 

since i t  does not enter until the third approximution. It i s  interesting to note, however, that 

the effect i s  destabilizing even in  the case of strong stable stratification unless .>3 7 l/ @ . 
1 

4. Solution for larrre Wavenumbers 

When the wavenumber i s  large ( k >> 1 ), we may use asymptotic solutions of eq . (2.3). 
As linearly independent solutions of Bessel's equation we now choose the Hankel functions 

of the first and second kind. Their asymptotic expansions are 

Using these expansions we obtain the following expressions which we substitute into eq. (2.2) 

3 I < { / +  - s2 + - - -  
I a 

8 
4% - I  ' Wa 

Wa 
- =  



c 
e . .  

* 
t 16. 

, h t h  similar expressions involving W3 and W (we s t i l l  assume n = m ). Now it may be 4 

seen that i n  eq. (2.2) higher order terms arising from W / W2 and W, / W2 are exponentially 

small and therefore negligible compared with terms arising from W / W 

then, we have 

( 4  

1 
f 

To second order, 2 2 .  

- - 2rc + I + % ’ - I  1-34 + a d z  
2 -  

8 d a  (1-d 1 a K ( I - c )  
We recall that 

p 7 -  d L A ?  1 /-‘e 
I - C  c i - c p  

Solving for the eigenvalue, c , we find that 

and for the amplification factor we obtain 

Thus, we have an amplified wave traveling approximately with the velocity of the 

shear at the interface. To first order the amplification i s  independent of both the stratification 

and the shear, and is, i n  fact, just what we would have i f  only the density discontinuity were 

present. This i s  not surprising since we would expect small wavelengths to be sensitive 

primarily to conditions at the interface. Both the stratification and the shear appear i n  the 

second order term where the effect of each i s  stabilizing . Moreover, we see that the most 

stable perturbations are those in  the direction of the mean velocity ( 8 = 0 ). This i s  also 

quite reasonable since i n  this direction the inhibiting effect of the velocity profile (which i s  

of the stable type) should be at i t s  maximum. 



c 
- *  

. 

17. 

. 
5. Conclusions 

We have seen that the dominant instability occurs for large values of the perturbation 

wavenumber (small wavelengths) i n  which case the amplification rate i s  proportional to fl 
These modes are primarily associated with the density discontinuity at the interface. The effects 

of  the velocity profile and the density stratification, while stabilizing, are of a smaller order of 

magnitude. 

For small values of the wavenumber the instabilities are characterized by the Richardson 

number of the stratification and the dimensionless number f. = A g/ cos 8 . Recalling 2 

that i s  the negative of the jump i n  the slope of the velocity profile at the interface, we 

see that i s  the ratio of the "Richardson number" of the density discontinuity to the square 

of the characteristic number of the projection of the velocity profile along the direction of the 

perturbation. From the form of  e ,  then, the effect of the mean flow, which we have assumed 

to be of the iet type, must always be stabilizing. 

We have seen that i n  the absence of stratification i f  < 1/4 there i s  a cut-off wave- 

number below which we have stability. However, when a statically stable density stratification 

i s  included in the problem there i s  instability for a l l  wavenumbers so that with respect to small 

wavenumbers the effect of a stable stratification i s  destabilizing . 
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